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Learning from sensor data

@ Models of the environment

@ Individual and species identification

(Trifa et al'08,Vallejo et al'07,Vilches et al'07)
o Organisms as situated agents. ..

We have significant developments in data collection and
computational resources, and significant developments in
modeling methods. But we need better models!
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Goals
Data

models

Little Greenbul:

o what is the bird doing? what sequences in these songs?
@ how is the bird doing that?
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>20K songs; here 4 of 6 types:
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(Zipf effects: % trigrams absent. 26% trigrams occur 1; 42% occur 2; >80% Ss occur 1)
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Gold models
PAC models

many models of learning, 2 convergence points

learning as identification in the limit: (Gold, 1967)

evidence: an enumeration t of a dataset L

(]

learner ¢: initial segments of enumerations — model G
¢ learns t: iff ¢ converges to a generator G of L

L is learnable: some ¢ learns every enumeration of L
class L is learnable iff every Le L is
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Gold models
PAC models

many models of learning, 2 convergence points

(Angluin, 1980) L is identifiable in the limit from examples iff every Le £
has a finite subset D such that

No such intermediate language L’

(Pitt, 1989) If £ identifiable with p > 1, then identifiable in the limit
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Gold models
PAC models

many models of learning, 2 convergence points

(Gold: positive results)

cF

Gold 1967 Angluin 1982 Yokomori 2003 Stabler et al 2003
finite reversible simple CF rigid PMCF

(nb: the models may be probabilistic, but the success criterion is Boolean)
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Gold models
PAC models

many models of learning, 2 convergence points

Learning as (distribution-free) approximate learning (PAC)

L h

error Q

With any p on €, learner’s hypothesis h has error < ¢, with
probability > 1 — ¢, after m(e, ) labeled samples from Q
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Gold models
PAC models

many models of learning, 2 convergence points

Learning as (distribution-free) approximate learning (PAC)
@ evidence: EX(L,u)" a sample of length n drawn from Q
w.r.t. u, labeled by target concept L € £
@ learner: a function ¢ from samples to hypotheses h € H

o class £ is PAC learnable iff 3¢ and m : [0,1]> — N such
that Vu VL € £L,V0 < ¢, < 1

G(EX(L, )™%)) = h where p(error, (L, h) <€) > (1 — )
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many models of learning, 2 convergence points

Gold models
PAC models

(Vapnik & Chervonenkis 1971, Blumer et al 1989, Alon et al. 1997,
Cucker & Smale 2001, Mukherjee et al. 2004, Poggio et al. 2004,...)

class L is

PAC learnable

ERM consistent

identifiable by a ‘leave-one-out stable’” method
VC(L) finite

uniform Glivenko-Cantelli (uGC)

E.P. Stabler, A.N.G. Kirschel, C.E. Taylor, UCLA Statistical learning theory and communication



Gold models
PAC models

many models of learning, 2 convergence points

(PAC, ERM and relatives: positive results)

& o'

Gold 1967 Angluin 1982  Yokomori 2003 Stabler et al 2003
fia reversible simple CF? rigid PMCF?

(most (all?) classes shown earlier have co VC dimension; not PAC)
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ve result 0: bounded finite class
Positive result 1: reversible FS
Positive result 2: simple CF
Positive result 3: rigid PMCF
compare

applying the learning models

bounded FSA (n-grams, Markov Models, etc)

(02888840,205) ... (028888840,124) ... (0288840,105) ... (0288888840,36) . ..(02888888840,7) ... (028888888840,6) ..

0 2 7 8 8
0|0 I 0. 0. i
2|0 o 0. 1. @ 8
8 |0 o0 0125 0875 @

@ Gold and PAC learnable
@ in Greenbul song, bounds not known
@ good model? decide by p(heldout) and simplicity of model
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Positive result 0: bounded finite class
Positive result 1: reversible FS
applying the learning models Positive result 2: simple CF

Positive result 3: rigid PMCF
compare

| 0 1 2 3 4 5 8 9
0.000000  0.207968  0.330182  0.404456  0.013504  0.014855  0.029034 _ 0.000000
0.013121  0.874113  0.019149  0.000000  0.091489  0.000709  0.000709  0.000709
0.348837  0.017054  0.009302  0.007752  0.065116  0.000000  0.528682  0.023256
0.225000  0.016667  0.009722  0.000000  0.022222  0.000000  0.715278  0.011111
0.007216  0.003436  0.017182  0.008591  0.001718  0.000000  0.012027  0.049828
0.363636  0.000000  0.000000  0.000000  0.030303  0.000000  0.606061  0.000000
0.014100  0.001356  0.010575  0.001898  0.208514  0.000542  0.761931  0.001085
0.000000  0.183908  0.310345  0.459770  0.022089  0.011494  0.011494  0.000000
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Positive result 0: bounded finite class
Positive result 1: reversible FS
applying the learning models Positive result 2: simple CF

Positive result 3: rigid PMCF
compare

(Angluin '82)
Reversible FS (forward and backward deterministic)

8
OO0 - .
()

@ no fixed finite bound (unlike n-gram, Markov models), not PAC
@ applied to birdsong by (Sasahara et al'06)

@ good model? compare p(heldout) (hunchino, rev unevidenced)
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Positive result 0: bounded finite class

Positive result 1: reversible FS
applying the learning models Positive result simple CF

Positive result 3: rigid PMCF

compare
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Positive result 0: bounded finite class

Positive result 1: reversible FS
applying the learning models Positive result 2: simple CF

Positive result 3: rigid PMCF

compare
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Positive result 0: bounded finite class
Positive result 1: reversible FS
applying the learning models Positive result 2: simple CF

Positive result 3: rigid PMCF
compare

o :
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Positive result 0: bounded finite class

Positive result 1: reversible FS
applying the learning models Positive result simple CF

Positive result 3: rigid PMCF

compare
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Positive result 0: bounded finite class
: reversible FS
applying the learning models : simple CF

Positive result 3: rigid PMCF
compare

Sasahara et al propose relaxing
reversibility to ‘k-reversibility'. . .

We will look at more radical strategies. ..
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Positive result 0: bounded finite class
Positive result 1: reversible FS
applying the learning models P ve result 2: simple CF

Positive result 3: rigid PMCF
compare

(Yokomori'03)
Simple CF: A — aa for a € ¥, € N*, at most one per a € ¥

mE .mm

N—*NN pushy / Pop S S0TE
N— + NN = T -2

N — - i E—8E
N—>0|1|2|... E— 4

@ Gentner et al'06: starlings recognize CF pattern (aabb)
@ good model of Greenbul song?

.. (0288884,205) . ..(02888884,124) ... (028884,105) ... (028888884,36) ... (0288888884,7) ... (02888888884,6) ...
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Positive result 0: bounded finite class
Positive result 1: reversible FS
applying the learning models P ve result 2: simple CF

Positive result 3: rigid PMCF
compare

(Yokomori'03)
Simple CF: A — aa for a € ¥, € N*, at most one per a € ¥

mE .mm

N—*NN pushy / Pop S S0TE
N— + NN = T -2

N — - i E—8E
N—>0|1|2|... E— 4

@ Gentner et al'06: starlings recognize CF pattern (aabb)

(*] gOOd mOde| Of Greenbul Song? (no: data not generable!, and misses repetition)

..(0288884,205) . ..(02888884,124) ... (028884,105) ... (028888884,36) ... (0288888884,7) ... (02888888884,6) ...
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Positive result 0: bounded finite class
Positive result 1: reversible FS
applying the learning models P ve result 2: simple CF

Positive result 3: rigid PMCF
compare

(Yokomori'03)
Simple CF: A — aa for a € ¥, € N*, at most one per a € ¥

mE .mm

N—*NN pushy / Pop S S0TE
N— + NN = T -2

N — - i E—8E
N—>0|1|2|... E— 4

@ Gentner et al'06: starlings recognize CF pattern (aabb)

(*] gOOd mOde| Of Greenbul Song? (no: data not generable!, and misses repetition)

How can we get all the data and increase p(repetitions)?

.. (0288884,205) . ..(02888884,124) ... (028884,105) ... (028888884,36) ... (0288888884,7) ...(02888888884,6) ...
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Positive result 0: bounded finite class
Positive result 1: reversible FS
applying the learning models P ve result 2: simple CF

Positive result 3: rigid PMCF
compare

the power of the queue

queue

stack

@ with a queue, we have turing machine power (e.g. Li et al '93)
@ idea: stack for computation + memory for input (PMCF)

E.P. Stabler, A.N.G. Kirschel, C.E. Taylor, UCLA Statistical learning theory and communication



Positive result 0: bounded finite class
Positive result 1: reversible FS
applying the learning models Positive result 2: simple CF

Positive result 3: rigid PMCF
compare

(Seki et al'91,Stabler et al'03,Kobele’06)

Unambiguous PMCF s— 1) e —

/A
R B B B

o rules allow copying, so p(copies)

) gOOd mOde|7 (hunch: maybe)
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Positive result 0: bounded finite class
Positive result 1: reversible FS
applying the learning models Positive result 2: simple CF

Positive result 3: rigid PMCF
compare

Comparison:

-log p(heldout)

430

400

350

-log p(heldout) 300

bigram 423.615064 250
trigram 398.922888 200
pmcf 308.870379 130

bi tri pmecf

@ not easy to keep such comparisons fair since the models differ in
many ways,
but these preliminary results confirm that small models with copying
can fit the data very well
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prospects

Prospects and future work:

@ n-gram,Markov,PAC models to weak; too few other models

@ H: birds produce and notice repetition in song sequences
@ Confirmed by our first comparison of Greenbul models
(cf Mennill&Vehrencamp’'08; Mann et al’'06; Hill'04; Trainer&McDonald’'95)
s Interesting models of gestural iteration & timing
(cf Nam et al’08; Port’03; Beek et al'02; Saltzman&Byrd'00; Wallenstein et al’95)

@ Many questions we would like to answer
@ How much individual variation among birds in same locale?
@ What kinds of information are communicated by birdsong?
o What neural mechanisms recognize/produce iteration?
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